CHINCO FIRESIDE TREATMENT CC CK 95/56226/23

K 95/56226/23

PO BOX 1664 PINETOWN 3600. 2 Richmond Place, Pinetown. Tel 031 7055404 Fax 0865144016 Cell 0716099888 E-mail: chinco-sa@mweb.co.za *RSA* VAT NO. 4220154605

APRIL 2015

THE BRITISH AMERICAN TOBACCO COMPANY, SOUTH AFRICA, RECENTLY ARRANGED FOR ASHREQ A GOVT CERTIFIED ENVIRONMENTAL CONSULTANT TO CARRY OUT A FULL ISOKINETIC STACK EMISSION TEST WITH REPORT ON 6TH FEBRUARY 'BEFORE' AND THEN THE 18TH FEBRUARY 2015 'AFTER' ADDING THE CHINCO COMBUSTION CATALYST TO THE COAL.

WE ATTACH HERETO TWO REPORT PAGES PERTAINING TO THE 'BEFORE' AND 'WITH' RESULTS FOR **BOILER NUMBER 3** INDICATING A POSITIVE DROP IN POISONOUS EMISSIONS 'AFTER' ADDING THE CHINCO CATALYST ON 18TH FEBRUARY 2015.

A SUMMARY OF THOSE RESULTS WERE:

- 1) THE TOTAL PARTICULATE MATTER (RATED 50) REDUCED FROM 84,897 MG/NM³ (EXCEEDS SET LIMIT) TO A MERE 28,035MG/NM³!
- 2) SO₂ (RATED 500) WAS REDUCED FROM 409.227 DOWN TO 156. 111 Mg/Nm³ (DOWN BY 63%!)
- 3) NOX (RATED 750) DROPPED FROM 156.86 MG/NM3 TO 150.28 MG/NM3.
- 4) CO_2 (RATED 50) REMAINED AT 7.31 IN BOTH TESTS. [HAD THE CO ITSELF BEEN TESTED IT WOULD HAVE REDUCED, AS INDICATED IN SIMILAR TESTS CARRIED OUT IN THE UK.]

A FULL 8 MB REPORT IS AVAILABLE ON REQUEST SHOWING THE EPA METHODS FOLLOWED AND CERTIFICATION OF, THE EXAMINER WITH GOVT ACCEPTANCE.

WE TRUST THAT THESE RESULTS ARE INTERESTING TO YOU AS WELL!

REGARDS

TOM ROBERTS CEO.

IN I PHONT CATTERYST

RESULTS CONTINUATION

SOURCE NAME		BOILER 3 STACK			
Run Number		RUN 1	RUN2	RUN3	I
Sampling Date		06-02-2015	06-02-2015	06-02-2015	AVERAGES
Stack Temperature (°C)		165.000	180.000	181.000	175.333
Volumetric Flow Rate (m3/s)		3.429	4.258	4.279	3.989
Volumetric Flow Rate (m3/min)		205.754	255.461	256.721	239.312
Volumetric Flow Rate (Nm3/hr.)		12345.252	15327.683	15403.279	14358.738
Stack Gas Velocity (m/s)		4.838	6.007	6.036	5.627
DETERMINANTS	Emission	RUN	RUN	RUN	Averages
	Rate[mg/Nm3	1	2	3	
ТРМ				Control of the Contro	
$[mg/Nm^3]$	50	100.135	89.665	64.890	84.897*
[mg/dsm³]	30	111.277	89.732	69.988	90.332
SO ₂					
[mg/Nm³]	500	224.408	574.767	428.506	409.227
[mg/dsm³]	300	241.041	617.371	460.170	439.527
NOx					
[mg/Nm³]	750	98.504	221.061	151.016	156.860
[mg/dsm³]	750	114.960	237.447	162.175	171.527
CO ₂					
[mg/Nm³]	50	6.094	8.531	7.314	7.313
[mg/dsm³]	30	6.545	9.164	7.854	7.854
COMMENTS	The average concentration of total particulate matter exceeded the emission limit. The remainder of constituents were in compliance with the legal limits specified.				

END of RESULTS

Legend:

Exceeds guideline emission limit

hg/lii i hllograma per liour

 mg/Nm^3 : milligrams per normal cubic metre (0°C and 101.3kPa)

m : metre

°C : degrees Celsius
BDL : Below Detection Limits

mg/dsm3 : milligrams per dry standard cubic metre

m/s : meters per second

Project Number	Page	Of	Company/Enterprise	Report Status
15-3128-01	7	15	British American Tobacco (Pty) Ltd	FINAL

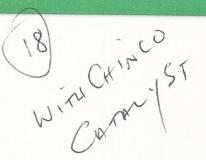
RESULTS CONTINUATION

BOILER 3 STACK				CE NAME	SOUR
	RUN3	RUN2	RUN 1	Run Number	
AVERAGES	18-02-2015	18-02-2015	18-02-2015	Sampling Date	
172.000	172.000	172.000	172.000	Stack Temperature (°C)	
4.218	4.647	4.193	3.815	Volumetric Flow Rate (m3/s)	
253.109	278.828	251.569	228.930	Volumetric Flow Rate (m3/min)	
15186.546	16729.706	15094.133	13735.799	Volumetric Flow Rate (Nm3/hr.)	
5.951	6.556	5.915	5.383	Stack Gas Velocity (m/s)	
Averages	RUN	RUN	RUN	Emission	DETERMINANTS
	3	2	1	Rate[mg/Nm3	
<u> </u>					TPM
28.035	15.805	12.037	56.264	50	[mg/Nm ³]
30.695	17.491	12.044	62.550		[mg/dsm ³]
30.033	271.51				SO ₂
156.111	180.949	178.284	109.099	500	[mg/Nm ³]
167.681	194.357	191.499	117.186		[mg/dsm ³]
1071001					NOx
150,280	129.963	164.362	156.515	750	[mg/Nm ³]
166.281	139.594	176.545	182.704		[mg/dsm ³]
100.201					CO ₂
7.312	9.141	7.312	5.484	50	[mg/Nm³]
7.854	9.818	7.854	5.891		[mg/dsm³]
7.054	3.010				COMMENTS

END of RESULTS

Legend:

: Exceeds guideline emission limit


kg/hr : kilograms per hour

: milligrams per normal cubic metre (0ºC and 101.3kPa)

°C : degrees Celsius BDL : Below Detection Limits

: milligrams per dry standard cubic metre

: meters per second

Project Number	umber Page Of Company/Enterprise		Company/Enterprise	Report Status
15-3175-01	7	16 Britis	British American Tobacco (Pty) Ltd	FINAL

ANNEXURES

DEPARTMENT OF LABOUR

This is to certify that

ASHREQ ENVIRONMENTAL AND OCCUPATIONAL HYGIENECONSILTANTS (Pty) Ltd

has been approved as an

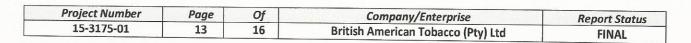
TYPE A: APPROVED INSPECTION AUTHORITY: OCCUPATIONAL **HEALTH AND HYGIENE**

in terms of the Occupational Health and Safety Act, 85 of 1993, for the monitoring of

Asbestos (Regulation 8 & 18), Lead (Regulation 7 & 14), Hazardous

Chemical Substances (Regulation 6 & 12), Noise Induced Hearing Loss

Regulations (Regulation 7)


CHIEF INSRECTOR

Effective date: 23 October 2014

Expiry date: 29 August 2018

OH0107-CI-021

CERTIFICATE NUMBER

